data clustering
资料分群,数据分组
2025-09-06 22:20 浏览次数 6
资料分群,数据分组
data clustering offers a solution to this problem.
数据集群为这个问题提供了一个解决方案。
self organizing map is a method of artificial neural network, which implements pattern recognition and data clustering simultaneously.
自组织特征映射是一种人工神经网络方法,可以同时实现模式识别和数据分类。
in view of the similarities between data clustering analysis and optimization questions, this paper deals with data clustering analysis by using simulation anneal algorithms.
本文针对数据聚类分析和最优化问题的相似点,用模拟退火算法进行聚类分析。
in recent years, with the application of clustering, high dimensional data clustering is becoming more common, and more important.
近年来随着聚类应用领域的扩展和深入,高维数据聚类越来越普遍,也越来越重要。
meanwhile, the research of the stream data clustering algorithm would be useful references to the similar researches.
同时,本文对流数据聚类算法的研究,对于促进同类问题的研究具有一定的理论价值和借鑒意义。
this paper formulates for solving the data clustering problem as a graph partition optimal problem, and proposes a parthenogenetic algorithm based on immune mechanism.
数据聚类问题可以转化为一个图形分割的最优化问题。 针对该问题的特点,文章构造了基于免疫机制的单亲遗传算法。
the realization of data clustering is also the process of vector quantization of image compress.
在实现数据聚类的同时,达到对图像矢量量化压缩的目的。
the universality of these data makes researches on high dimensional data clustering more and more important.
由于高维数据存在的普遍性,高维数据的聚类分析具有非常重要的意义。
seven kinds of spatial data clustering approaches are studied. and the technique to solve the problem of constraint-based spatial cluster analysis is explored.
系统研究了七种典型的空间数据聚类方法,积极探索基于约束条件的空间聚类问题的解决方案;
in summary, the accuracy of statistics depends on the sampling rate, the data skew, and data clustering for data sampling.
总之,统计信息的準确性取决于抽样率、数据倾斜(dataskew)以及用于数据抽样的数据群集。
the result of the example shows that the new algorithm can efficiently solve data clustering analysis problems.
通过实例验证,表明该新算法能够有效地解决数据聚类分析问题。
an evolutionary immune network for data clustering is used to adaptively determine amount and initial positions of rbf centers according to input data set;
该算法采用了一种可以实现数据聚类的免疫进化网络,根据输入数据集合自适应地确定rbf网络隐层中心的数量和初始位置;
we design and implement the artificial immune network algorithm, and successfully apply this algorithm in solving a pattern recognition problem and a data clustering problem.
在此基础上,设计和实现了人工免疫网络算法,并应用该算法成功解决了一个模式识别和数据聚类问题。
employing data clustering theory to analyze the traffic flow velocity data in every day, and summarizing the regularity about the traffic speed in different days.
利用数据聚类理论和方法对各天的路段上的交通流速度进行了聚类分析,验证了速度数据的周相似的性质,总结出了速度数据的分类表。
this algorithm can be used in data clustering and face detection. its effectiveness has been proven by the experiment results.
这个算法可以用于数据聚类和人脸识别方面,实验结果也证明了该算法的效果。
a crucial step in the analysis process is to enable users to understand the results of the data clustering step.
在分析过程中,一个关键的步骤就是让用户理解数据集群步骤的结果。
data mining is the core topic of this paper. basically, it includes associate rule founding, data clustering and data assorting.
数据挖掘是本课题的研究核心,主要包括关联规则发现、数据聚类和数据分类。
data clustering is an important problem in data mining.
数据聚类是数据挖掘中的一个重要课题。
based on the traditional fuzzy c-means clustering algorithm, a new fuzzy c-means clustering algorithm for interval data clustering is proposed.
在传统模糊c-均值聚类算法的基础上,提出了一种新型区间值数据模糊聚类算法。
given a set of n objects data, dividing the data clustering techniques to construct k partitions, each partition represents a cluster, k less than or equal n.
在给定一个有n个对象的数据集,划分聚类技术将构造数据进行k个划分,每一个划分代表一个簇,k小于等于n。
an interesting and important variant of data clustering is graph-clustering. on the one hand, the similarity between data objects in data set is often expressed by a graph.
图的聚类是数据聚类的一种很重要的变体,一方面通常可以用图来表示数据集中数据的相似度;
recently, the graph-theoretical approaches are widely used in the fields of data clustering and image segmentation.
近年来,基于图论的聚类算法被广泛地应用在数据聚类和图像分割之中。
data clustering can have an especially large impact on data warehouse query performance, because rows are often retrieved in large numbers.
数据聚簇对于数据仓库查询性能的影响尤其显着,因为常常在一个查询中获取许多行。
an artificial immune mechanism for data clustering is used to adaptively specify the amount and initial positions of the rbf centers according to input data set;
该算法采用了一种可以实现数据聚类的人工免疫机制根据输入数据集合自适应地确定rbf网络隐层中心的数量和初始位置;
in data clustering analysis technology, the data has been divided into natural colony, and each colony characteristic describes one data mining method.
聚类分析技术就是将数据区分为自然的群体,并给出每个群体特征描述的一种数据挖掘方法。