double integral
[数] 二重积分
2025-09-07 00:27 浏览次数 9
[数] 二重积分
double-integral AD双积分AD
double Fourier integral双重傅里叶积分
double-integral iteration method二次积分迭代法
double photoelectric integral method双次光电积分法
double trapezoid integral二重积分
double slope integral amplifier双斜率积分时间扩展电路
double circuit integral二重圈线积分
double e integral二重积分
no matter which form it is,it relates a line integral to a double integral let「s just try to see if we can reduce it to the one we had yesterday.
不管哪种形式,都把线积分和二重积分联系在一起,来看看,能不能通过化简得到昨天的公式。
d well, we」ll have a double integral over u of, so, the inner integral becomes r at the point on the top.
dv的三重积分变为。。。,ok,,so,triple,integral,over,d,of,rz,dv,becomes,我们将得到一个u上的二重积分,内积分变成r。。。
let「s us replace a line integral along a closed curve by a double integral well, here it is the same.
用一个二重积分,来代替沿闭曲线的线积分,原理是一样的。
so, that means that the double integral for flux through the top of r vector field dot nds becomes double integral of the top of r dxdy.
这就是说通量的二重积分,顶部r?nds的二重积分,变成了rdxdy的二重积分。
you know how to compute a double integral of a function.
要懂得如何计算一个函数的二重积分。
xda so, i said we had to compute the double integral of x da over this region here, which is a disk of radius one, centered at, this point is .
我们需要计算二重积分,在这个区域上,区域是一个半径为1的圆盘,中心在点。
i will just get double integral over r of x da, which looks certainly a lot more pleasant.
我只需要计算xda在r上的二重积分,看上去确实简单许多。
the double integral side does not even have any kind of renaming to do.
没有必要对二重积分重新命名了。
so, for example, the area of region is the double integral of just da, 1da or if it helps you, one da if you want.
举个例子,区域r的面积是da的二重积分,便于理解,在这里写成。
one way to think about it, if you」re really still attached to the idea of double integral as a volume what this measures is the volume below the graph of a function one.
一种考虑这个问题的办法是,如果你还觉得,二重积分是求体积的话,那这个度量的,就是函数1的图形下的体积。
so, i will -- -- compute the double integral over the region inside of curl f da.
我会计算,在这个区域内旋度fda的二重积分。
it will just be the double integral over a surface of f dot n ds.
它就是曲面上对fds的二重积分。
one example that we did,in particular, was to compute the double integral of a quarter of a unit disk.
我们已经做过的一个例子是,计算四分之一单位圆上的二重积分。
so, the divergence of this field is two. now, green「s theorem tells us that the flux out of this region is going to be the double integral of 2 da. what is r now?
也就是这个场的散度是2,格林公式告诉我们,区域的通量就是,2da的二重积分了,现在的区域r是什么呢?
i mean, of course, if you didn」t see that, then you can also compute that double integral directly.
如果你没看出来,也可以直接计算二重积分。
and, when you「ve done that, it becomes just a double integral in the usual sense.
这么做的话,它就变成了通常的二重积分。
so, switching the area, moving the area to the other side, i」ll get double integral of xda is the area of origin times the x coordinate of the center of mass.
那么,改变一下区域,把这块移到另一侧,我们得到对xda的双重积分,是原点那的圆面积乘质心的x的坐标。
it is still,for the the double integral of r squared da.
转动惯量仍然是r^2da的二重积分。
so, one of them says the line integral for the work done by a vector field along a closed curve counterclockwise is equal to the double integral of a curl of a field over the enclosed region.
其中一种说明了,在向量场上,沿逆时针方向,向量做的功等于,平面区域上旋度f的二重积分。
so, now, if i compare my double integral and, sorry, my triple integral and my flux integral, i get that they are, indeed, the same.
比较这个二重积分的话,抱歉。。。,比较这个三重积分和通量积分,就可以看到,它们是一样的。
then, yes, we can apply green「s theorem and it will tell us that it」s equal to the double integral in here of curl f da, 0 which will be zero because this is zero.
那就可以使用格林公式了,并且我们知道,它就等于的二重积分,结果为0,因为旋度f等于。
xy so, in fact, what we'll be computing is a double integral over some mysterious region of v du dv.
,从而我们要算的就是,在一个未知的区域内关于vdudv的二重积分。
use geometry or you need to set up for double integral of a surface.
总之,就是用几何方法或是在曲面上建立二重积分。