factorial
n. [数] 阶乘
adj. 因子的,阶乘的
2025-10-31 13:16 浏览次数 9
n. [数] 阶乘
adj. 因子的,阶乘的
"1, 2, 6, 24, and 120 are factorials"
Full Factorial全因子
inverse factorial反阶乘
generalized factorial广义阶乘
factorial experiment[数] 析因实验;因子试验
factorial analysis因子分析,因素分析
factorial approach因素考量说
factorial validity因素效度
factorial ship加工船
factorial development分段显影;系数显影法;[摄] 因子显影
factorial method要因加算法
factorial design[数] 析因设计;[数] 因子设计
the data section holds the value we want to compute the factorial of in a space labeled number.
数据部分在标记为number的空间中存放有我们所要计算的阶乘。
divided by na factorial times the same thing for b.
再除以na的阶乘,对b同样。
there is nothing to stop it when it hits zero, so it would continue calling factorial on zero and the negative numbers.
当计算到零时,没有条件来停止它,所以它会继续调用零和负数的阶乘。
here is an implementation of a factorial calculator, where we use a conventional technique of calling a second, nested method to do the work.
这里是一个阶乘计算器的实现,我们会使用一种常规的方法,通过调用第二个,嵌套的方法来完成计算。
the test case consists of some simple command argument processing followed by a loop that calculates the factorial of the specified values (if any).
测试用例包含几个简单的命令参数处理,然后是一个循环,它计算指定值(如果有的话)的阶乘。
so there「s no n factorial involved here.
所以不包含n的阶乘。
the factorial of a number is computed as that number times all of the numbers below it up to and including 1.
计算某个数的阶乘就是用那个数去乘包括1在内的所有比它小的数。
chapter 5 deals with partitioning problems, converting recursive functions to iterative functions (it」s fun, i assure you), and more factorial and fibonacci series implementations.
第5章介绍了划分问题、递归函数到迭代函数的转换(我可以向您保证,这非常有趣)以及阶乘和斐波纳级数的实现。
if you「ve written factorial code, you」ve probably noticed that the code is still wrong.
编写了阶乘代码后,您可能发现该代码仍有错误。
this functionality works well as a recursive application, as shown in the sample factorial function in listing 4.
这个功能作为递归应用程序工作良好,如 清单4中的样本阶乘函数所示。
when control comes back to this point, the factorial result should be in register 3.
至此,阶乘的结果就应该已经存在于寄存器3 内了。
this limits greatly the possible range of your factorial function.
这极大地限制了阶乘函数的可能范围。
so q is just little q to the capital n power, n and then we「ve seen you have to divide by n factorial to avoid the overcounting of configurations that are in fact not distinguishable.
所以q就是小q的大n次方,是粒子数目,the,number,of,particles。,然后我们知道你还要除以n的阶乘,以避免对不可分辨,的构型的重复计数。
so let」s just break that out then, and use the stirling「s approximation for each of the factorial terms.
那让我们在这指出,使用斯特林近似,对每一阶乘项。
there are a few features of this factorial function that are interesting.
这个阶乘函数有几个非常有趣的地方。
what happens, for instance, if you try to find the value of the factorial of 4? let」s follow the sequence
例如,如果我们要计算4的阶乘为多少,到底会发生什么呢?
since you want the factorial of the number 4, it goes into register 3, the register used for the first parameter.
由于需要对数值4 进行阶乘,它进入的是用来保存第一个参数的寄存器3。
what you want to do with this value in register 3 is to calculate the factorial of it.
在寄存器3 中想要做的是计算此值的阶乘。
don「t be taken aback by the size of the code -- it」s mostly comments and declarations (the factorial function itself only has 16 instructions).
这段代码看起来比较多,但您也无需望而却步,因为其中大部分都是注释和声明(阶乘函数本身只有16 个指令)。
to begin looking at spu assembly language, i will enter in a simple program for calculating the factorial of a 32-bit number using a recursive algorithm.
在开始介绍 spu汇编语言之前,先来看一个通过递归算法计算32位数的阶乘的简单程序。
now, let「s return to the factorial function.
现在,让我们回到阶乘函数上来。
that is, now we have to divide by na factorial times nb factorial.
就是说,现在我们要除以na的阶乘乘以nb的阶乘的积。
then, because num is greater than 0, factorial will be called again, this time with 3.
然后,由于num大于0,因此会再次调用factorial,不过这次是计算3 的阶乘了。
that this n over factorial only comes into play when you」re talking about the translational degree of freedom. not the other degrees of freedom.
需要n!这个因子,只在讨论平动自由度时,其它自由度都不需要。