bcs theory is modified by random matrices theory, and a new approach is obtained to treat superconductivity in small metallic grains.
用无规矩阵理论对bcs理论进行修正,得到一种处理金属小粒子超导电性的新方法。
the numerical experiments also indicate that the condition numbers of random matrices tend to be stable, and gaussian elimination is almost stable. the strictly proof will be further researched.
实验结果还表明了随机三角矩阵的条件数趋于稳定,表明高斯消去法是几乎稳定的,理论证明尚得进一步探讨。
the conventional bcs theory is generalized using random matrices theory, and a new approach is obtained to explain superconductivity in small metallic grains.
本文对常规的bcs理论用无规矩阵理论进行了推广,得到一种研究金属小粒子超导电性的新方法。
a result among the joint distribution, marginal distributions and the distribution of linear combination of a class of non-independent random matrices is put forward.
给出了一类非独立的多个正态随机矩阵的联合分布、边际分布及其线性组合的分布之间关系的一个结果。