thermodynamic
adj. 热力学的;使用热动力的
2025-08-15 14:02 浏览次数 8
adj. 热力学的;使用热动力的
"the thermodynamic limit"
thermodynamic data热力学数据
thermodynamic equilibrium[热] 热力学平衡
thermodynamic state热力学状态
thermodynamic function热力函数
thermodynamic parameter[热] 热力学参数
thermodynamic system[热] 热力学体系;[热] 热力学系统
thermodynamic cycle[热] 热力循环,[热] 热动力循环
thermodynamic trap热动力式疏水阀
thermodynamic property热力学性质
thermodynamic process[热] 热力学过程
thermodynamic instrumentation热工仪表
thermodynamic flux热力学通量
thermodynamic principle[热]
thermodynamic quantity热力学量;热力学变量
like i promised, we「re going to be able to derive every thermodynamic quantity if we just know the partition function.
就像我说过的,我就可以计算所有的热力学量,如果我知道了配分函数。
i should be able to start from my microscopic picture and get to macroscopic thermodynamic results.
我们能够从微观图像出发,最终得到宏观热力学的结果。
collectively, these features can be said to arise via thermodynamic constraints.
总体上可以说热力学限制了这些特性。
this must be brought into the picture, along with the performance of thermodynamic work cycles that link spontaneous and non-spontaneous processes like an engine.
这一点必须与热力学功循环的表现一起考虑,热力学连系到自发过程和像发动机那样的非自发过程。
you can look at it the thermodynamic way, which is the way that we」re going to want to be looking at it.
可以认为是热力学过程,这是我们将会,看待的过程。
ok, all right, so these are the thermodynamic quantities that you「re familiar with already.
好,这些是你们已经,熟悉了的热力学量,让我们很快地。
they also plan to study the extent of the thermodynamic effects, both in terms of local magnitude and of how far downwind the effects spread.
他们还计划从当地重要性和在顺风中传播的距离两个角度研究热力学影响的程度。
so we」re going to go through a thermodynamic cycle, and here「s what i want to calculate when we do this.
那么我们要推导,一个热力学循环,这是这个过程中我要计算的东西。
but usually if you have a thermodynamic system, then it」s big enough. that「s what thermodynamics is about.
但一般对一个热力学体系,它总是足够大的,这正是热力学要表述的
you can calculate all the macroscopic properties that ordinarily come from the thermodynamic laws that were based on empirical macroscopic observation.
你们能计算所有问题,你们能得到所有宏观的性质,它们通常来源于以实验的,宏观的观察为基础的热力学定律。
if it」s not, then you「re going to have trouble describing it using thermodynamic properties.
如果它不是,那么用热力学性质去,描述它就要有麻烦了。
with smolyaninov and hung’s setup, researchers could study the thermodynamic arrow of time, a long-standing problem in physics.
使用斯莫利亚尼诺的装置,研究人员可以研究物理学中长期存在的问题,即时间中的热力学箭头问题。
and i」m not going to write out all of the individuals thermodynamic terms, but i「ll write a few of them.
我不会写出,所有的各热力学项,我只会写出其中的一些。
emergent properties arising via thermodynamic and morphodynamic constraints are abundant in non-life: the hardness of minerals; the malleability of metals; the surface tension of liquids.
非生命物质,由于热力学和形态动力学约束,得到的自然发生的性质是丰富多彩的:矿物的硬度,金属的延展性,以及液体表面的张力。
and saw how in the framework of statistical mechanics, we could derive the thermodynamic results that you saw before, based on an empirical framework.
并且看到在统计力学的框架下,我们能得到你们之前看到的,基于实验框架的热力学结果。
and the reason is, as we」ll see shortly, it turns out that every single macroscopic thermodynamic function can be derived by knowing just that.
原因在于,我们待会就会看到,这个求和可以推导,任何一个体系的宏观热力学量,得到结果之后。
this serves as a crude model of entropy, smolyaninov says, representing the thermodynamic arrow of time.
可以看作是熵的粗糙模型,斯莫连尼诺乌说,它代表了热力学时间之箭。
basically going through a few examples, just to see how it plays out when we calculate thermodynamic quantities, b ased on our microscopic picture.
大体上通过一些例子,来看看它是如何演绎的,当我们计算热力学量时,基于微观图像。
on the thermodynamic framework e「ve been working with all term.
在热力学的框架下,我们已经处理过这些问题。
in your equations, it」s the same thermodynamic picture.
在方程里面,基本是相同的热力学图像。
and then we can start writing out the results for the various thermodynamic properties.
这样我们就能开始写出不同结果,热力学性质的。
so in other words, macroscopic thermodynamic properties come straight out of our microscopic model of statistical mechanics.
换句话说,宏观的热力学性质可以,从微观模型,的统计力学得到。
what thermodynamic function is naturally a function of n, v, t?
什么热力学量,是v,n和t的自然函数?
so in the earlier part of the course, and saw the macroscopic thermodynamic treatment.
在课程的前一部分,见过宏观的热力学处理方法。
its individual water molecules each adopt a dipolar v-shaped configuration via thermodynamic constraints, and they then interact via mophodynamic constraints to form a crystalline lattice.
受到热力学的限制,它的每一个水分子都变成了v形配置结构的偶极子。然后他们通过形态动力学的约束相互作用,形成一个晶体点阵。
this serves as a crude model of entropy, smolyaninov says, representing the thermodynamic arrow of time.
斯莫利亚尼诺说,这也就是熵的粗糙模型,其代表了时间热力学箭头;
we formulate these broad thermodynamic laws.
然后抽象这些一般的热力学定律。