the test experiments with real infrared date illustrate the effectiveness of the proposed background clutter suppression algorithm.
利用几组实测数据的测试实验结果表明了所提出的算法的有效性。
an effective morphological neural network of background clutter prediction for detecting dim small targets in image data was proposed.
提出一种有效的背景杂波预测形态神经网络模型,用于检测图像数据中的弱小目标。
according to the imaging difference of target, background clutter and noise, a moving small target detection method based on spacial high-pass filtering and n-frame track accumulating is presented.
根据目标、背景干扰和噪声在红外序列图像中的差异,提出了一种基于空间高通滤波和时间域上n帧轨迹积累的运动小目标检测方法。
the targets are in the background clutter which intensity is heavy. so the performance of the general algorithms is not very good.
由于目标处于海天线附近的高强度背景杂波中,因此,采用常规的点目标检测算法对其进行检测的结果都不够理想。
because there is speckle noise in sar image and the background clutter of water is usually very complex, weak target detection is a big challenge for conventional methods.
sar图像存在相干噪声以及水面背景杂波的复杂性,传统方法对于弱目标检测存在困难。
the experiment results indicate that wavelet transform can enhance the target and suppress background clutter effectively, and improve the target detection probability and reduce the detection error.
实验结果表明,小波变换能很好地增强目标,抑制背景杂波,从而提高目标检测概率,降低误检测。
also, a stretch processing of lfm signal to remove the background clutter is discussed. this method is simple and easily implemented in engineering.
该文提出的基于线性调频信号拉伸处理的杂波剔除方法,在用干涉技术进行三维成像之前剔除强背景杂波,方法简单易于工程实现。
the key techniques of automatic target identification in non-tracking emplacement reconnaissance radar are static background clutter processing and identification of target signals.
基于背景杂波的处理和目标信号的识别,讨论了非跟蹤体制炮位侦察雷达目标的自动识别问题。
this dissertation concentrates just in the two key techniques: the suppression of strong background clutter and the detection of the dim small moving targets in multi-frames.
本文研究的正是弱小目标检测与跟蹤系统中的两项关键技术:强背景杂波抑制与基于多帧的弱小目标检测技术。
a new procedure for detecting weak and small infrared targets in the background clutter was presented.
提出了长波红外图像中近地空中小目标特性抽取的一种方法 。
target is so small and target signal is so weak relative to background clutter and noise that image signal-to-noise ratio (snr) is very low.
对获取的远距离图像,目标成像面积小,目标信号相对背景和噪声来说较弱,甚至被噪声所淹没,致使图像的信噪比很低。
experimental results using real ir image sequences show that the registration precision can be pixel level and the windows selected can shield background clutter effectively.
通过实测空中红外小飞机图像序列,证明了该算法配準精度可达到象素级,并可有效屏蔽背景杂波干扰。
theory analysis and computer simulation show the improved smf is a linear approach and it can extract dim target from ir background clutter effectively.
原理分析与实验结果表明,这是一种易于硬件实现,能有效抑制强起伏背景杂波的线性滤波方法。